2022

VIGIL: A Python tool for automatized probabilistic VolcanIc Gas dIspersion modeLling

Dioguardi F, Massaro S, Chiodini G, Costa A, Folch A, Macedonio G, Sandri L, Selva J, Tamburello G. VIGIL: A Python tool for automatized probabilistic VolcanIc Gas dIspersion modeLling. Ann. Geophys. [Internet]. 2022May2 [cited 2022Jun.16];65(1):DM107. Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/8796

Abstract

Probabilistic volcanic hazard assessment is a standard methodology based on running a deterministic hazard quantification tool multiple times to explore the full range of uncertainty in the input parameters and boundary conditions, in order to probabilistically quantify the variability of outputs accounting for such uncertainties. Nowadays, different volcanic hazards are quantified by means of this approach. Among these, volcanic gas emission is particularly relevant given the threat posed to human health if concentrations and exposure times exceed certain thresholds. There are different types of gas emissions but two main scenarios can be recognized: hot buoyant gas emissions from fumaroles and the ground and dense gas emissions feeding density currents that can occur, e.g., in limnic eruptions.

Simulation tools are available to model the evolution of critical gas concentrations over an area of interest. Moreover, in order to perform probabilistic hazard assessments of volcanic gases, simulations should account for the natural variability associated to aspects such as seasonal and daily wind conditions, localized or diffuse source locations, and gas fluxes.

Here we present VIGIL (automatized probabilistic VolcanIc Gas dIspersion modeLling), a new Python tool designed for managing the entire simulation workflow involved in single and probabilistic applications of gas dispersion modelling. VIGIL is able to manage the whole process from meteorological data processing, needed to run gas dispersion in both the dilute and dense gas flow scenarios, to the post processing of models’ outputs. Two application examples are presented to show some of the modelling capabilities offered by VIGIL.

Original article

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top