2024

Topographic controls on pyroclastic density current hazard at Aluto volcano (Ethiopia) identified using a novel zero-censored Gaussian Process emulator

Tierz, P., Spiller, E. T., Clarke, B. A., Dessalegn, F., Bekele, Y., Lewi, E., et al. (2024). Topographic controls on pyroclastic density current hazard at Aluto volcano (Ethiopia) identified using a novel zero-censored Gaussian Process emulator. Journal of Geophysical Research: Solid Earth, 129, e2023JB028645. https://doi.org/10.1029/2023JB028645

Abstract

Aluto volcano (Central Ethiopia) displays a complex, hybrid topography, combining elements typical of caldera systems (e.g., a central, flat caldera floor) and stratovolcanoes (e.g., relatively high and steep, radial flanks, related to eruptions occurring clustered in space). The most recent known eruptions at Aluto have commonly generated column-collapse pyroclastic density currents (PDCs), a hazardous phenomenon that can pose a significant risk to inhabited areas on and around the volcano. In order to analyze and quantify the role that Aluto’s complex topography has on PDC hazard, we apply a versatile probabilistic strategy, which merges the TITAN2D model for PDCs with a novel zero-censored Gaussian Process (zGP) emulator, enabling robust uncertainty quantification at tractable computational costs. Results from our analyses indicate a critical role of the eruptive vent location, but also highlight a complex interplay between the topography and PDC volume and mobility. The relative importance of each factor reciprocally depends on the other factors. Thus, large PDCs (≥0.1–0.5 km3) can diminish the influence of topography over proximal regions of flow propagation, but PDCs respond to large- and small-scale topographic features over medial to distal areas, and the zGP captures processes like PDC channelization and overbanking. The novel zGP can be applied to other PDC models and can enable specific investigations of PDC dynamics, topographic interactions, and PDC hazard at many volcanic systems worldwide. Potentially, it could also be used during volcanic crises, when time constraints usually only permit computation of scenario-based hazard assessments.

Original article

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top