2022

On the feasibility and usefulness of high-performance computing in probabilistic volcanic hazard assessment: An application to tephra hazard from Campi Flegrei

Montesinos, B. M., Luzón, M. T., Sandri, L., Rudyy, O., Cheptsov, A., Macedonio, G., Folch, A., Barsotti, S., Selva, J., & Costa, A. (2022). On the feasibility and usefulness of high-performance computing in probabilistic volcanic hazard assessment: An application to tephra hazard from Campi Flegrei  . In Frontiers in Earth Science  (Vol. 10). https://www.frontiersin.org/articles/10.3389/feart.2022.941789

Abstract

For active volcanoes, knowledge about probabilities of eruption and impacted areas becomes valuable information for decision-makers to develop short- and long-term emergency plans, for which probabilistic volcanic hazard assessment (PVHA) is needed. High-resolution or spatially extended PVHA requires extreme-scale high-performance computing systems. Within the framework of ChEESE (Center of Excellence for Exascale in Solid Earth; www.cheese-coe.eu), an effort was made to generate exascale-suitable codes and workflows to collect and process in some hours the large amount of data that a quality PVHA requires. To this end, we created an optimized HPC-based workflow coined PVHA_HPC-WF to develop PVHA for a volcano. This tool uses the Bayesian event tree methodology to calculate eruption probabilities, vent-opening location(s), and eruptive source parameters (ESPs) based on volcano history, monitoring system data, and meteorological conditions. Then, the tool interacts with the chosen hazard model, performing a simulation for each ESP set or volcanic scenario (VS). Finally, the resulting information is processed by proof-of-concept-subjected high-performance data analytics (HPDA) scripts, producing the hazard maps which describe the probability over time of exceeding critical thresholds at each location in the investigated geographical domain. Although PVHA_HPC-WF can be adapted to other hazards, we focus here on tephra (i.e., lapilli and ash) transport and deposition. As an application, we performed PVHA for Campi Flegrei (CF), Italy, an active volcano located in one of the most densely inhabited areas in Europe and under busy air traffic routes. CF is currently in unrest, classified as being in an attention level by the Italian Civil Protection. We consider an approximate 2,000 × 2,000 × 40 km computational domain with 2 km grid resolution in the horizontal and 40 vertical levels, centered in CF. To explore the natural variability and uncertainty of the eruptive conditions, we consider a large number of VSs allowing us to include those of low probability but high impact, and simulations of tephra dispersal are performed for each of them using the FALL3D model. Results show the potential of HPC to timely execute a vast range of simulations of complex numerical models in large high-resolution computational domains and analyze great volumes of data to obtain quality hazard maps.

Reference article

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top