2024

Investigating Subsurface Properties of the Shallow Lunar Crust Using Seismic Interferometry on Synthetic and Recorded Data

Keil, S., Igel, H., Schimmel, M., Lindner, F., & Bernauer, F. (2024). Investigating Subsurface Properties of the Shallow Lunar Crust Using Seismic Interferometry on Synthetic and Recorded Data. Earth and Space Science, 11(10), e2024EA003742. https://doi.org/10.1029/2024EA003742

Abstract

In the past few years, the remarkable progress of commercially operated spacecrafts, the success with reusable rocket engines, as well as the international competition to explore space, has led to a substantial acceleration of activities in the design and preparation of ambitious future lunar missions. In the search for ice and/or cavities imaging the shallow subsurface structure is of vital importance. Hereby, previous studies have shown that seismic interferometry is a promising method to investigate the subsurface properties from passive lunar data. In this study, we want to evaluate the potential of this method further by examining the required duration of seismic measurements and the influence of scattering on the Green’s function retrieval. Therefore, we applied seismic interferometry to both measured Apollo 17 data and synthetic data. Our findings indicate that, under optimal conditions, a few hours of data are sufficient when using the method of time-scaled phase-weighted stack (ts-PWS). However, this strongly depends on the inter-station distance, the orientation toward the principal noise sources, and the timing of the measurement during the lunar cycle. Additionally, we were able to reproduce the measured data using numerical simulations in 2D. The synthetic results show that scattering effects clearly influence the Green’s function extraction, especially for larger station distances.

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top