Robert, A. M. M., M. Fernàndez, I. Jiménez-Munt, and J. Vergés (2017), Lithospheric structure in Central Eurasia derived from elevation, geoid anomaly and thermal analysis, Geological Society, London, Special Publications, 427(1), 271-293, doi: 10.1144/sp427.10.

We present new crustal and lithospheric thickness maps for Central Eurasia from the combination of elevation and geoid anomaly data and thermal analysis. The results are strongly constrained by numerous previous data based on seismological and seismic experiments, tomographic imaging and integrated geophysical studies. Our results indicate that high topography regions are associated with crustal thickening that is at a maximum below the Zagros, Himalaya, Tien Shan and the Tibetan Plateau. The stiffer continental blocks that remain undeformed within the continental collision areas are characterized by a slightly thickened crust and flat topography. Lithospheric thickness and crustal thickness show different patterns that highlight an important strain partitioning within the lithosphere. The Arabia–Eurasia collision zone is characterized by a thick lithosphere underneath the Zagros belt, whereas a thin to non-existent lithospheric mantle is observed beneath the Iranian and Anatolian plateaus. Conversely, the India–Eurasia collision zone is characterized by a very thick lithosphere below its southern part as a consequence of the underplating of the cold and stiff Indian lithosphere. Our new model presents great improvements compared to previous global models available for the region, and allows us to discuss major aspects related to the lithospheric structure and acting geodynamic processes in Central Eurasia.

Original article

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of this site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

  I accept cookies from this site.
EU Cookie Directive plugin by