Segura A, Cuscó R, Attaccalite C, Taniguchi T, Watanabe K, Artús L. Tuning the Direct and Indirect Excitonic Transitions of h-BN by Hydrostatic Pressure. J Phys Chem C. 2021;125(23):12880-12885. doi:10.1021/acs.jpcc.1c02082


The pressure dependence of the direct and indirect bandgap transitions of hexagonal boron nitride is investigated using optical reflectance under hydrostatic pressure in an anvil cell with sapphire windows up to 2.5 GPa. Features in the reflectance spectra associated with the absorption at the direct and indirect bandgap transitions are found to downshift with increasing pressure, with pressure coefficients of −26 ± 2 and −36 ± 2 meV GPa–1, respectively. The GW calculations yield a faster decrease of the direct bandgap with pressure compared to the indirect bandgap. Including the strong excitonic effects through the Bethe–Salpeter equation, the direct excitonic transition is found to have a much lower pressure coefficient than the indirect excitonic transition. This suggests a strong variation of the binding energy of the direct exciton with pressure. The experiments corroborate the theoretical predictions and indicate an enhancement of the indirect nature of the bulk hexagonal boron nitride crystal under hydrostatic pressure.

Reference article

Access to the article via Digital.CSIC open institutional repositoryAccess to the article via Digital.CSIC open institutional repository

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of this site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

  I accept cookies from this site.
EU Cookie Directive plugin by