Cruset D, Vergés J, Rodrigues N, et al. U–Pb dating of carbonate veins constraining timing of beef growth and oil generation within Vaca Muerta Formation and compression history in the Neuquén Basin along the Andean fold and thrust belt. Mar Pet Geol. 2021:105204. doi:https://doi.org/10.1016/j.marpetgeo.2021.105204

Abstract

We combine structural analysis of fractures with 22 U–Pb dates measured in fracture-filling carbonate cements from bed-parallel fibrous calcite veins (beef), conjugated veins and faults within the Vaca Muerta Formation along the Andean fold and thrust belt in the Neuquén Basin. The measured ages constrain accurately the relationships between overpressures caused by hydrocarbon generation and Andean compression as mechanisms for natural fracturing and vein formation.

Two generations of fibres have been identified in beef. The first one, consists of dark fibres from the inner zones, which are perpendicular to bedding and contain abundant cone-in-cone structures and hydrocarbon inclusions. U–Pb dating of these fibres yielded Early to Late Cretaceous ages from 116.7 ± 17.7 to 78.8 ± 10.2 Ma. The second generation of fibres corresponds to the outer zones and consists of white fibres oblique to bedding, indicating growth during layer-parallel shortening.

Bed-perpendicular veins cutting beef yielded Late Cretaceous-late Palaeocene dates from 72.8 ± 22.4 to 60.9 ± 10.4 Ma. Eocene ages from 52.0 ± 2.9 to 42.2 ± 18.9 Ma were measured in bed-parallel slip surfaces and reverse and strike-slip faults, whereas Miocene dates from 13.9 ± 2.6 to 6.2 ± 1.1 Ma were measured in E-W calcite veins.

U–Pb dating of veins, structural analysis of fractures and subsidence curves, indicate that beef inner zones formed in the oil window during burial of the Neuquén basin, and that tectonic stresses could enhance their formation. Beef outer zones and bed-perpendicular veins formed during E-W Late Cretaceous-late Palaeocene layer-parallel shortening. Contrarily, late Palaeocene-late Eocene bed-parallel slip surfaces and faults and Miocene E-W veins formed during NE-SW and E-W syn-to post-folding deformation, respectively. In both cases, syn-to post-folding compression occurred synchronously with forelandward migration of magmatic activity attributed to flat subduction of the Pacific slab beneath the Andes.

Reference article

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of this site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

  I accept cookies from this site.
EU Cookie Directive plugin by www.channeldigital.co.uk