Vergés, J., Poprawski, Y., Almar, Y., Drzewiecki, P.A., Moragas, M., Bover‐Arnal, T., Macchiavelli, C., Wright, W., Messager, G., Embry, J.‐C. and Hunt, D. (2020),Tectono‐Sedimentary Evolution of Jurassic‐Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain. Basin Research. doi:10.1111/bre.12447

Abstract

Integration of extensive fieldwork, remote sensing mapping and 3D models from high quality drone photographs relates tectonics and sedimentation to define the Jurassic–early Albian diapiric evolution of the N‐S Miravete anticline, the NW‐SE Castel de Cabra anticline and the NW‐SE Cañada Vellida ridge in the Maestrat basin (Iberian Ranges, Spain). The pre‐shortening diapiric structures are defined by well‐exposed and unambiguous halokinetic geometries such as hooks and flaps, salt walls and collapse normal faults. These were developed on Triassic salt‐bearing deposits, previously misinterpreted because they were hidden and overprinted by the Alpine shortening. The Miravete anticline grew during the Jurassic and Early Cretaceous and were rejuvenated during Cenozoic shortening. Its evolution is separated into 4 halokinetic stages, including the latest Alpine compression. Regionally, the well‐exposed Castel de Cabra salt anticline and Cañada Vellida salt wall confirm the widespread Jurassic and Early Cretaceous diapiric evolution of the Maestrat basin. The NE flank of the Cañada Vellida salt wall is characterized by hook patterns and by a 500‐m long thin Upper Jurassic carbonates defining an upturned flap, inferred as the roof of the salt wall before NE‐directed salt extrusion. A regional E‐W cross‐section through the Ababuj, Miravete and Cañada‐Benatanduz anticlines shows typical geometries of salt‐related rift basins, partly decoupled from basement faults. These structures could form a broader diapiric region still to be investigated. In this section, the Camarillas and Fortanete minibasins displayed well‐developed bowl geometries at the onset of shortening. The most active period of diapiric growth in the Maestrat basin occurred during the Early Cretaceous, which is also recorded in the Eastern Betics, Asturias and Basque‐Cantabrian basins. This period coincides with the peak of eastward drift of the Iberian microplate, with speeds of 20 mm/yr. The transtensional regime is interpreted to have played a role in diapiric development.

Reference article

Additional resources and data

Download here the kmz file with additional data of this research

BannerVerges2020

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of this site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

  I accept cookies from this site.
EU Cookie Directive plugin by www.channeldigital.co.uk