2023

High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral

Santamaría-Pérez, D., Chuliá-Jordán, R., Otero-de-la-Roza, A., Oliva, R., & Popescu, C. (2023). High-Pressure Experimental and DFT Structural Studies of Aurichalcite Mineral. In Minerals (Vol. 13, Issue 5). https://doi.org/10.3390/min13050619

Abstract

We report on high-pressure angle-dispersive synchrotron X-ray diffraction data of a natural Zn3.78(2)Cu1.22(2)(CO3)2(OH)6 aurichalcite mineral up to 7.6 GPa and ab initio total energy calculations of the aurichalcite structure with three different Zn-Cu stoichiometries (Zn:Cu ratios = 10:0, 8:2 and 6:4). A monoclinic-to-triclinic displacive second-order phase transition was found experimentally at 3 GPa. The experimental bulk modulus of the initial P21/m aurichalcite is B0 = 66(2) GPa, with a first-pressure derivative of B0′ = 9(2). A comparison with other basic copper and zinc carbonates shows that this B0 value is considerably larger than those of malachite and azurite. This relative incompressibility occurs despite the fact that aurichalcite features a layered structure due to the number of directed hydrogen bonds between carbonate groups and the cation-centered oxygen polyhedra forming complex sheets. The existence of different bond types and polyhedral compressibilities entails a certain anisotropic compression, with axial compressibilities κa0 = 3.79(5)·10−3 GPa−1κb0 = 5.44(9)·10−3 GPa−1 and κc0 = 4.61(9)·10−3 GPa−1. Additional density-functional theory calculations on the C2/m hydrozincite-type structure with different Zn:Cu compositional ratios shows that the aurichalcite structure is energetically more stable than the hydrozincite one for compositions of Zn:Cu = 10:0, 8:2 and 6:4 at room pressure. The pure Zn aurichalcite phase, however, was predicted to transform into hydrozincite at 18 GPa, which suggests that the experimentally observed hydrozincite structure is a metastable phase.
 

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top