2024

Folding of a single layer in an anisotropic viscous matrix under layer-parallel shortening

Hu, Y., Bons, P. D., de Riese, T., Liu, S., Llorens, M.-G., González-Esvertit, E., Gómez-Rivas, E., Li, D., Fu, Y., & Cai, X. (2024). Folding of a single layer in an anisotropic viscous matrix under layer-parallel shortening. Journal of Structural Geology, 105246. https://doi.org/10.1016/j.jsg.2024.105246

Abstract

Folds are common structures that provide valuable insights into the direction and amount of shortening and the rheological properties of deformed rocks. Most thin plate folding theory started from M.A. Biot has historically been applied to isotropic materials, but rocks are often anisotropic due to the presence of tectonic foliations, bedding, veins, dykes, etc. Mechanical anisotropy can enhance partitioning of deformation, resulting in low-strain domains and localised high-strain shear domains. Using the Viscoplastic full-field code coupled with the modelling platform Elle (VPFFT-Elle), we investigate the evolving fold geometries, stress field and strain-rate field differences and redistributions resulting from layer-parallel shortening deformation of an isotropic, competent layer embedded in an anisotropic, weaker power-law viscous matrix. We focus on the effect of the orientation of the mechanical anisotropy relative to the competent layer. The simulation results illustrate that the deformation localisation behaviour, and hence fold geometry, depend on (i) the initial orientation of the anisotropy, (ii) the intensity of anisotropy, and (iii) strength of the competent layer, relative to that of the matrix. Variation in the localisation behaviour resulting from different strain-rate distributions lead to two end-member fold geometries: (1) classical Biot-type buckle folding and thickening of the competent layer coupled to the formation of a new axial-planar crenulation cleavage in the matrix, and (2) what we call ‘shear-band folding’ in which sections of the competent layer are offset due to the formation of shear bands in the matrix with opposite sense of shear. This leads to rapid fold amplification. Classical Biot-type buckle folds dominate when the initial anisotropy is parallel or subparallel to the shortening direction, while shear-band folds dominate when the initial anisotropy is normal or at high angle to the shortening direction. Results presented here contribute to our understanding on how mechanical anisotropy controls folding and the rearrangement of the matrix components. Furthermore, the modelled scenarios can serve as a “virtual glossary” to compare real folds in different tectonic settings, providing insights into the possible pre-fold configuration of the folded layer and its anisotropic matrix.

Full article

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top