2024

Machine learning applications on lunar meteorite minerals: From classification to mechanical properties prediction

Peña-Asensio, E., Trigo-Rodríguez, J. M., Sort, J., Ibáñez-Insa, J., & Rimola, A. (2024). Machine learning applications on lunar meteorite minerals: From classification to mechanical properties prediction. International Journal of Mining Science and Technology. https://doi.org/10.1016/j.ijmst.2024.08.001

Abstract

Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value, non-destructive testing methods are essential. This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis. This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084, JAH 838, and NWA 11444 lunar meteorites based solely on their atomic percentage compositions. Leveraging a prior-data fitted network model, we achieved near-perfect classification scores for meteorites, mineral groups, and individual minerals. The regressor models, notably the K-Neighbor model, provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness, reduced Young’s modulus, and elastic recovery. Further considerations on the nature and physical properties of the minerals forming these meteorites, including porosity, crystal orientation, or shock degree, are essential for refining predictions. Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration, which pave the way for new advancements and quick assessments in extraterrestrial mineral mining, processing, and research.

Original article

Política de privacidad

De acuerdo con la Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los derechos digitales (LOPDGDD) ,el Reglamento General de Protección de Datos (RGPD) y legislación concordante, GEO3BCN-CSIC se compromete al cumplimiento de la obligación de secreto con respecto a los datos de carácter personal y al deber de tratarlos con confidencialidad tras la realización de los análisis de riesgos correspondientes, en especial, de acuerdo con la Disposición adicional primera de la LOPDGDD, las medidas de seguridad que correspondan de las previstas en el Esquema Nacional de Seguridad necesarias para evitar su alteración, pérdida, tratamiento o acceso no autorizado.

El usuario podrá ejercitar en todo momento los derechos de acceso, rectificación, cancelación, oposición, limitación o portabilidad dirigiéndose por escrito a la Secretaría General del CSIC en la dirección C/Serrano 117, 28006 MADRID (España)  acompañando fotocopia de D.N.I.  o mediante el Registro Electrónico del CSIC ubicado en su Sede Electrónica, para lo que deberá disponer de certificado electrónico reconocido. Se puede contactar con el Delegado de Protección de Datos del CSIC a través del correo delegadoprotecciondatos@csic.es

GEO3BCN-CSIC se reserva la facultad de modificar la presente Política de Privacidad para adaptarla a las novedades legislativas, jurisprudenciales o de interpretación de la Agencia Española de Protección de Datos. En este caso, GEO3BCN-CSIC anunciará dichos cambios, indicando claramente y con la debida antelación las modificaciones efectuadas, y solicitando, en caso de que se considere necesario, la aceptación de los mismos.

No
Aceptar

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll al inicio