2021

Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions

Lobo, A.; Garcia, E.; Barroso, G.; Martí, D.; Fernandez-Turiel, J.-L.; Ibáñez-Insa, J. Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin–Tungsten Deposits: Simulation under Indoor Conditions. Remote Sens. 2021, 13, 3258. https://doi.org/10.3390/rs13163258

Abstract

This study aims to assess the feasibility of delineating and identifying mineral ores from hyperspectral images of tin–tungsten mine excavation faces using machine learning classification. We compiled a set of hand samples of minerals of interest from a tin–tungsten mine and analyzed two types of hyperspectral images: (1) images acquired with a laboratory set-up under close-to-optimal conditions, and (2) a scan of a simulated mine face using a field set-up, under conditions closer to those in the gallery. We have analyzed the following minerals: cassiterite (tin ore), wolframite (tungsten ore), chalcopyrite, malachite, muscovite, and quartz. Classification (Linear Discriminant Analysis, Singular Vector Machines and Random Forest) of laboratory spectra had a very high overall accuracy rate (98%), slightly lower if the 450–950 nm and 950–1650 nm ranges are considered independently, and much lower (74.5%) for simulated conventional RGB imagery. Classification accuracy for the simulation was lower than in the laboratory but still high (85%), likely a consequence of the lower spatial resolution. All three classification methods performed similarly in this case, with Random Forest producing results of slightly higher accuracy. The user’s accuracy for wolframite was 85%, but cassiterite was often confused with wolframite (user’s accuracy: 70%). A lumped ore category achieved 94.9% user’s accuracy. Our study confirms the suitability of hyperspectral imaging to record the spatial distribution of ore mineralization in progressing tungsten–tin mine faces.

Article reference

Access to the article via Digital.CSIC open institutional repository

Política de privacidad

De acuerdo con la Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los derechos digitales (LOPDGDD) ,el Reglamento General de Protección de Datos (RGPD) y legislación concordante, GEO3BCN-CSIC se compromete al cumplimiento de la obligación de secreto con respecto a los datos de carácter personal y al deber de tratarlos con confidencialidad tras la realización de los análisis de riesgos correspondientes, en especial, de acuerdo con la Disposición adicional primera de la LOPDGDD, las medidas de seguridad que correspondan de las previstas en el Esquema Nacional de Seguridad necesarias para evitar su alteración, pérdida, tratamiento o acceso no autorizado.

El usuario podrá ejercitar en todo momento los derechos de acceso, rectificación, cancelación, oposición, limitación o portabilidad dirigiéndose por escrito a la Secretaría General del CSIC en la dirección C/Serrano 117, 28006 MADRID (España)  acompañando fotocopia de D.N.I.  o mediante el Registro Electrónico del CSIC ubicado en su Sede Electrónica, para lo que deberá disponer de certificado electrónico reconocido. Se puede contactar con el Delegado de Protección de Datos del CSIC a través del correo delegadoprotecciondatos@csic.es

GEO3BCN-CSIC se reserva la facultad de modificar la presente Política de Privacidad para adaptarla a las novedades legislativas, jurisprudenciales o de interpretación de la Agencia Española de Protección de Datos. En este caso, GEO3BCN-CSIC anunciará dichos cambios, indicando claramente y con la debida antelación las modificaciones efectuadas, y solicitando, en caso de que se considere necesario, la aceptación de los mismos.

No
Aceptar

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll al inicio