2024

Crustal Characterization of the Hengill Geothermal Fields: Insights From Isotropic and Anisotropic Seismic Noise Imaging Using a 500-Node Array

Wu, S.-M., Sánchez-Pastor, P., Ágústsdóttir, T., Hersir, G. P., Mordret, A., Hjörleifsdóttir, V., & Obermann, A. (2024). Crustal characterization of the Hengill geothermal fields: Insights from isotropic and anisotropic seismic noise imaging using a 500-node array. Journal of Geophysical Research: Solid Earth, 129, e2024JB028915. https://doi.org/10.1029/2024JB028915

Abstract

The Hengill volcano and its associated geothermal fields represent Iceland’s most productive harnessed high-temperature geothermal fields, where resources are fueled by cooling magmatic intrusions connected to three volcanic systems. The crustal structure in this area is highly heterogeneous and shaped by the intricate interplay between tectonic forces and magmatic/hydrothermal activities. This complexity makes detailed subsurface characterization challenging. In this study, we aim to push the current resolution limits using a 500-node temporary seismic array and perform an isotropic and, for the first time, radially-anisotropic velocity model of the area. The high-resolution isotropic velocity model reveals the characteristic N30ºE fissure swarm that crosses the area within the top 500 m and outlines a deep-seated low-velocity body composed of cooling magmatic intrusions at 5 km depth. This deeper body is located near the eastern part of the three volcanic centers and connected to a shallower body at 2–3 km depth that strikes westward toward Hengill volcano. Additionally, our study discovered that non-induced earthquakes deeper than 2 km align with velocity contrasts that reflect structural variability, indicating the potential to identify deep permeable pathways using dense array imaging. The anisotropic model indicates that the shallow crust of Hengill within the top 2 km is dominated by vertical fractures or cracks, likely attributed to overall divergent deformation from rifting in the study area. This characteristic is diminished at depths greater than 2–3 km, replaced by a layering pattern where the lava flows and/or subhorizontal intrusions become the primary factors influencing the observed anisotropy.

Original article

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top